Spectral Projected Gradient methods: Review and Perspectives
نویسندگان
چکیده
Over the last two decades, it has been observed that using the gradient vector as a search direction in large-scale optimization may lead to efficient algorithms. The effectiveness relies on choosing the step lengths according to novel ideas that are related to the spectrum of the underlying local Hessian rather than related to the standard decrease in the objective function. A review of these so-called spectral projected gradient methods for convex constrained optimization is presented. To illustrate the performance of these low-cost schemes, an optimization problem on the set of positive definite matrices is described.
منابع مشابه
Enhancing Sparsity by Constraining Strategies: Constrained SIRT versus Spectral Projected Gradient Methods
We investigate a constrained version of simultaneous iterative reconstruction techniques (SIRT) from the general viewpoint of projected gradient methods. This connection enable us to assess the computational merit of this algorithm class. We borrow a leaf from numerical optimization to cope with the slow convergence of projected gradient methods and propose an acceleration procedure based on th...
متن کاملNonmonotone Spectral Projected Gradient Methods on Convex Sets
Nonmonotone projected gradient techniques are considered for the minimization of differentiable functions on closed convex sets. The classical projected gradient schemes are extended to include a nonmonotone steplength strategy that is based on the Grippo-Lampariello-Lucidi nonmonotone line search. In particular, the nonmonotone strategy is combined with the spectral gradient choice of stepleng...
متن کاملInexact Spectral Projected Gradient Methods on Convex Sets
A new method is introduced for large scale convex constrained optimization. The general model algorithm involves, at each iteration, the approximate minimization of a convex quadratic on the feasible set of the original problem and global convergence is obtained by means of nonmonotone line searches. A specific algorithm, the Inexact Spectral Projected Gradient method (ISPG), is implemented usi...
متن کاملUniversidad Central de Venezuela
A study of the convergence properties of spectral projected subgradient method is presented and the convergence is shown. The convergence is based on spectral projected gradient approach. Some updates of the spectral projected subgradient are described.
متن کاملSpectral Projected Gradient Method on Convex Sets 227 3 . New Algorithm
The spectral gradient method has proved to be effective for solving large-scale unconstrained optimization problems. It has been recently extended and combined with the projected gradient method for solving optimization problems on convex sets. This combination includes the use of nonmonotone line search techniques to preserve the fast local convergence. In this work we further extend the spect...
متن کامل